Traverse SDK

The Traverse version 11 Software Developer’s Kit (SDK) is online, and available wherever and
whenever you need it. Use the Traverse SDK to ensure that your modifications adhere to
Traverse standards—making them easy to maintain, update, and upgrade.

The Traverse SDK includes:
- Framework Documentation and Programming Guidelines

-Schema Definitions

- Entity Relationship Diagrams
-Code Generator

-Object Documentation

- TSMX Builder

- Client Update Utility

- Task Panes, including a configuration file and a short tutorial

Table of Contents [<] & @
([jStandards & Guides - || AddValidationRules
[HTRAVERSE Framework
[FNaming Guideline Walidation rules that define business logic of the entity should be maintained at the business layer. This helps reduce the scattering of "entity knowledge" in various
[LBusiness Layer layers of software project.

DAdd\.IaHdationRules. . Everstar allows creating lists of validation rules by defining "Common Rules" and "Entity Rules". Every entity class implements some sort of validation list. A simple
[%)Business Layer Guidelirl || ayampls would be one that checks for a null value in a field. The best aspect of the Everstar implementation is the extensibility and flexibility that is achieved using
[}Business Layer Intearati || dalegates. These concepts should become more dlear with the following discussion and examples.

[FjCanDelete £
“gData Constraints The first step in implementing Entity level validation rules is to include an override for the base Entity "AddValidationRules" method. The override should include a call to
“gHints the base method to insure that the validations of the base Entity are included in the list of validation rules. Once this method has been implemented, additional
~yNaming Guidelines validations can be added to the entity by issuing the "AddRule" method of the "ValidationRules" list.

_JOthers = / /implements the AddvalidationRules method

@frocess-based Tasks protected override void AddValidationRules()

—Reqular Expressions

aReports / fadds any base Entity validations to the list of validation rules
ZaluserInteriace base.AddValidationRules();

[yProgramming Model
[TRAVERSE Namespace
(1) MaxTextLengthAtiribute ¢
[FMaxTextLengthAttribu
[} FieldLength Property Adding a simple validation rule via the "AddRule" method requires nothing more than a "ValidationRuleHandler" and the name of a property to apply the validation too.
“gModificationAttribute Cla The following example prevents the given property from being set to a null.
_JRelationshipAttribute Cls|
[7RelationshipAttribute Re
TITRAVERSE Business Nam
ZJTRAVERSE Business Audil More complex validations may require a set of validation rule arguments (ValidationRuleArgs) to provide additional information needed to process the validation. For
_ATRAVERSE Business.Inver those handlers that have specific requirements, a unique validation rule arguments declaration will exist to define the additional information that is needed. The
_JTRAVERSE Business.Meta following example uses the "StringMaxLength” handler along with the "MaxLengthRuleArgs" to define both the name of the property to validate as well as the maximum
“UTRAVERSE.Business Rept length parameter value.
_JTRAVERSE Business Tax I .
“4TRAVERSE Business Tran ~ / /limit the length of the property te 10 characters
this.validationRules.AddRule(Validation.CommonRules.StringMaxLength

//TODO - add validations
H

[/ prevent the property from being null
this.validationRules.AddRule(Validation.CommonRules.Notlull,"Propertylame™);

4 (b , new Validation.Ci les.Maxl hRuleArgs("Propertylame”, 10));
_ Table of Contents Additionally, there may be instances where the specifics of the validation need to vary depending upon some other condition. To address this, each set of validation rule
71 Search arguments can be given a conditional rule handler. The conditional rule handler is implemented locally within the Entity to determine if a specific condition exists. Any

number of local metheds can be created for identifying given conditions as long as they have a signature that matches the declaration of a ConditionalRuleHandler. Mote
that the signature includes a property name that can be used to process multiple conditions within a single method. The following example addresses a case where a
dnta el b b " £ m

Powered by

4301 Dean Lakes Blvd. Shakopee, MN 55379

952.428.7629 | www.osas.com Trave rS e

https://www.osas.com

Traverse SDK

Traverse version 11 SDK Tools and Documents

Framework Documentation and
Programming Guidelines

The framework provides mapping from relational
databases to the object world, which allows
application developers to focus on requirements
and features rather than dealing with complexities
of databases and SQL statements.

Schema Definitions

Online, searchable access to the schema definitions
for the enumerated field values, system databases,
and company databases is available for every
application.

Entity Relationship Diagrams

This file contains the relationship diagrams for the
version 11 Traverse schema. The two files are in PDF
format, and the file names include references to
the application information contained in each file.

Code Generator

This tool can be used to automate the creation

of class assemblies that are compatible with the
Traverse version 11 framework to support new
schema entities. A ‘Quick Start’ guide to using the
code generator is included in the file.

Object Documentation

These XML files facilitate the understanding of the
methods available in the application. When the
files are extracted into the folder that contains the
Traverse programs (dlls) on machines that will be
used for development, the Visual Studio Object
Browser will show any extended comments that
have been created in the source projects.

4301 Dean Lakes Blvd. Shakopee, MN 55379

952.428.7629 | www.osas.com

TSMX Builder

The TSMX Builder utility is used to create the SQL
scripts that perform desired tasks on a database to
accommodate customizations. These can include
the creation or alteration of database objects,

the manipulation of data, or virtually any other

SQL compatible instruction. Once these sets of
instructions have been built and tested individually,
they can be compiled into an update package
using this utility.

Client Update Utility

The Client Update Ultility is an extension of
programs available in Traverse that automatically
checks for updated files deployed to a

server. This tool has a dual purpose. First, as a
development tool, it can be used to build the
AssemblyListCustom.xml file for custom files that
should be deployed to client installations. Second,
when deployed into the installation environment,
this tool can automate checking and updating
client files using external tools such as Windows
Task Scheduler. This can also be run as part of a
logon or batch process for users. Updates could be
silently loaded prior to the loading of Traverse, so
the user does not receive a message regarding the
availability of new updates after the software has
loaded.

Task Panes

This file includes the current OSl-provided Task
Panes for Traverse, a sample configuration file, and
a short tutorial on configuring your system to use
Task Panes.

Powered by

Traverse

https://www.osas.com

